Note

Synthesis of glycofuranoimidazolidin-2-ones from 2-amino-2-deoxyaldoses

JUAN A. GALBIS PÉREZ, FRANCISCA ZAMORA MATA, AND PILAR TURMO FERNANDE?

Department of Organic Chemistry, Faculty of Pharmacy, University of Seville, 41071 Seville (Spain)
(Received October 31st, 1986; accepted for publication, December 19th, 1986)

In seeking to prepare 4-(D-arabino-tetritol-1-yl)-imidazolin-2-one (1) by reaction¹ of 2-amino-2-deoxy-D-glucose with silver cyanate, 1.2-dideoxy- α -D-gluco-furano[1,2-d]imidazolidin-2-one (2) was obtained. This type of product has not been obtained hitherto from 2-amino sugars, although the 2-thione analogues are well known².

The structure of **2** is supported by its chemical and spectroscopic data. The u.v. spectrum of **2** contained no absorption band above 200 nm, and the ¹H- and ¹³C-n.m.r. spectra of **2** and its triacetate **3** (see Tables I and II) accord only with the bicyclic structures **2** and **3**. We believe that the product obtained by Pauly and Ludwig¹ was really an impure sample of **2**.

An attempt to obtain 1 by acid-catalysed isomerisation of 2, as described for some glycofuranoimidazolidines³, gave a complex mixture of products that could not be identified. In the absence of acid, 2 did not react.

In a similar manner, 2-amino-2-deoxy-D-glycero-L-gluco-heptose⁴ reacted with silver cyanate to afford 1,2-dideoxy-β-D-glycero-L-gluco-heptofurano[1,2-d]imidazolidin-2-one (4), characterised as the tetra-acetate 5, the structures of which were indicated by their ¹H- and ¹³C-n.m.r. spectra. Likewise, the epimeric

HOCH
HOCH
HCOH
CH₂OR

$$RO$$
 RO
 RO

_	
ш	
2	
⋖	
_	

H-N.M.R. DATA FOR 2-6	2-6		[ļ		ľ		Ì	
Compound	Solvent	Chemic	Chemical shifts (8)	()								
		H-I'	Н-2′	Н-3′	H-4'	Н-5′	H-6'	.9-H	Н-7′	H-7"	NH	ОАС
7	D ₂ O (CD ₃) ₂ SO	5.75 d • 5.47 dd	5.75 d ←4.26-4.18 m→ 5.47 dd ←	- m 81	3.90	-3.90-3.20 m	ш 09	11			7.18 s ^a 6.64 s ^a	
ю	CDCI	5.78 dd		5.20 d	4.32 dd						6.33 s ^a 6.23 s ^a	2.07 s (6 H) 2.02 s (3 H)
	CDCl ₃ + D ₂ O	5.78 d	4.17 d	5.19 d	4.32 dd	5.26 dq	4.56 dd	4.11 dd				2.07 s (6 H) 2.02 s (3H)
4	$(CD_3)_2SO$	5.46 dd <).4	- 4.00-3.00 m			1	7.17 s	
w	CDCI,	5.75 dd	5.75 dd 4.16 dd	5.13 d	4.25dd	4.25dd ←-5.55-5.28 m→	5.28 m→		4.33 dd	4.33 dd 3.94 dd	5.70 d 5.55 d	2.10 s (3 H) 2.07 s (3 H) 2.04 s (3 H) 2.03 s (3 H)
	$CDCI_3 + D_2O$	5.75 d	4.14 d	5.12 d	4.24 dd	4.24 dd ←5.75-5.28 m→	5.28 m→		4.33 dd	3.94 dd		2.11s(3H) 2.08s(3H) 2.05s(3H)
9	O_2O	5.66 d	4.20 d	4.34 d			4.00	- 4.00-3.50 m			j	Z.03 S (3 D)
Compound	Solvent	J values (Hz)	(Hz)	j							i	
		$\mathbf{J}_{I.Z}$	$\mathbf{J}_{Z',J'}$	J3',4'	J _{4',5'}	J _{5',6'}	Js.6	J _{6',6} J	J6.7. J6.7.	7. J.7.	J _{Z,NH}	H J',NH
, 5	D ₂ O (CD ₃) ₂ SO	6.3	999	ć	6	ų (9				1.4
o	CDCI ₃ + D ₂ 0	6.3	? ?	2.9	8.9 9.3	2.4	5.7	-12.3 -12.3				
4 æ	(CD ₃) ₂ SO CDC ₃ CDC ₃ + D.O	6.1 6.0 6.3	999	2.8 8 8	ox ox			•	4.8 7.0		-11.6 2.2	1.3 1.6
•	D20	6.5	9	1.7	9			•			2	
			ĺ	 		! 	 		 			

⁴Broadening due to ¹⁴N-quadrupole relaxation.

134 NOTE

TABLE II

13C-N.M.R. DATA FOR 2-6

Compound	Solvent	Chemical shifts (p.p.m.)							
		C-1'	C-2'	C-3'	C-4'	C-5'	C-6'	C-7'	C=0
2	D_2O	87.8	64.9	75.6	79.7	69.8	64.8		164.6
3	CĎCl ₃	86,9	62.5	76.0	76.0	68.0	63.4		161.3
4	(CD ₃) ₂ SO	86.6	64.2	75.0	78.8	67.6^{a}	71.6"	63.3	162.5
5	ČDĆĺ,	86.7	62.4	75.8	75.8	67.7^{a}	70.0"	62.4	160.7
6	D ₂ O	85.5	68.4	73.3	79.2	68.8^{a}	72.5"	64.0	167.8

[&]quot;These assignments may be interchanged.

mixture of 2-deoxy-2-ethylamino-D-glycero-L-gluco- and -D-glycero-L-manno-heptose⁵ gave a product (6) having the β -D-glycero-L-gluco configuration, for which the $J_{2,3}$ value of ~ 0 Hz accorded² with a trans arrangement of H-2,3. The α -D-glycero-L-manno isomer was detected spectroscopically and chromatographically, but could not be isolated.

EXPERIMENTAL.

General methods. — Solutions were concentrated in vacuo at <40°. Melting points are uncorrected. Optical rotations were measured at $20 \pm 2^\circ$, using a 10-cm cell. T.l.c. was performed on Silica Gel GF₂₅₄ (Merck) with ether-hexane (3:1 or 1:1), and detection with u.v. light or iodine vapour. P.c. (ascending and descending) was performed on Whatman No. 1 paper, using 1-butanol-pyridine-water (1:1:1) and 1-butanol-acetic acid-water (4:1:5), and detection with silver nitrate-sodium hydroxide and iodine vapour. I.r. spectra were recorded for KBr discs. ¹H-(80.13 MHz) and ¹³C-n.m.r. (20.15 MHz) spectra were recorded with a Bruker WP-80-SY spectrometer.

1,2-Dideoxy- α -D-glucofurano[1,2-d]imidazolidin-2-one (2). — A suspension of 2-amino-2-deoxy-D-glucose hydrochloride (1 g, 4.7 mmol) and silver cyanate (0.8 g, 5.3 mmol) in water (8 mL) was kept at ~45° until the chloride test was negative, then filtered, and concentrated to dryness. To a solution of the residue in methanol was added ethanol to incipient turbidity. The mixture was stored at 0° for 3 days, to give 2 (0.63 g, 70%), m.p. 156-158° (from methanol), $[\alpha]_D$ -70° (c 1, water): $\nu_{\rm max}$ 3600-3000 (NH,OH), 1690 and 1660 cm⁻¹ (urea).

Anal. Calc. for $C_7H_{12}N_2O_5$: C, 41.17; H, 5.92; N, 13.72. Found: C, 41.22; H, 6.01; N, 13.78.

Conventional treatment of **2** with pyridine–acetic anhydride gave the triacetate **3** (31%), m.p. 166–168° (from aqueous 96% ethanol), $[\alpha]_D$ +22° (c 1, chloroform); ν_{max} 3500–3000 (NH), 1750, 1740 and 1710 (ester), 1765 and 1665 cm⁻¹ (urea).

NOTE 135

Anal. Calc. for $C_{13}H_{18}N_2O_8$: C, 47.27; H, 5.49; N, 8.48. Found: C, 46.95; H, 5.20; N, 8.19.

1,2-Dideoxy- α -D-glycero-L-gluco-heptofurano[1,2-d]imidazolidin-2-one (4). — Treatment of 2-amino-2-deoxy-D-glycero-L-gluco-heptose hydrochloride (1 g, 4 mmol) and silver cyanate (0.7 g, 4.6 mmol), as described for 2, gave 4 (0.37 g, 40%), m.p. 182–184° (from methanol-water), $[\alpha]_D$ +52° (c 1, water); ν_{max} 3600–3000 (NH,OH), 1690 and 1660 cm⁻¹ (urea).

Anal. Calc. for $C_8H_{14}N_2O_6$: C, 41.02; H, 6.02; N, 11.96. Found: C, 41.02; H, 6.08; N, 11.94.

The tetra-acetate (5) of 4 had m.p. $168-170^{\circ}$ (from ethanol), $[\alpha]_{\rm D}$ +28° (c 1, chloroform); $\nu_{\rm max}$ 3500–3000 (NH), 1740 and 1720 (ester), 1690 and 1670 cm⁻¹ (urea).

Anal. Calc. for $C_6H_{22}N_2O_{10}$: C, 47.76; H, 5.51; N, 6.96. Found: C, 47.52; H, 5.20; N, 6.81.

3-Ethyl-(1,2-dideoxy-β-D-glycero-L-gluco-heptofurano)[1,2-d]imidazolidin-2-one (6). — A suspension of the epimeric mixture of 2-deoxy-2-ethylamino-D-glycero-L-gluco- and -D-glycero-L-manno-heptose hydrochloride (3.4 g, 12.4 mmol) and silver cyanate in water (20 mL) was processed as for 2, to yield a 3:2 mixture (1 H-n.m.r. data) of 6 and the α-D-glycero-L-manno isomer. Crystallisation of this amorphous mixture from methanol-ethanol gave 6 (2 g, 55%), m.p. 157–159°, [α]_D +74° (c 1, water); ν_{max} 3600–3100 (NH,OH), 1670 and 1650 cm⁻¹ (urea).

Anal. Calc. for $C_{10}H_{18}N_2O_6$: C, 45.79; H, 6.90; N, 10.68. Found: C, 45.54; H, 6.88; N, 10.76.

REFERENCES

- 1 H. PAULY AND E. LUDWIG, Hoppe-Seyler's Z. Physiol. Chem., 121 (1922) 170-176.
- 2 J. A. GALBIS PEREZ, J. C. PALACIOS ALBARRAN, J. L. JIMENEZ REQUEJO, M. AVALOS GONZALEZ, AND J. M. FERNANDEZ-BOLAÑOS, Carbohydr. Res., 131 (1984) 71-82, and references therein.
- 3 J. FUENTES MOTA, P. ARECES BRAVO, F. REBOLLEDO VICENTE, J. F. FERNANDEZ GARCIA-HIERRO, AND J. A. GALBIS PEREZ, J. Nucleos. Nucleot., 3 (1984) 115–121.
- 4 J. A. GALBIS PEREZ, R. M. PINTO CORRALIZA, E. ROMAN GALAN, AND M. GOMEZ GUILLEN, An. Quím., 75 (1979) 387-391.
- 5 J. A. GALBIS PEREZ, J. L. JIMENEZ REQUEJO, J. C. PALACIOS ALBARRAN, M. AVALOS GONZALEZ, AND J. FERNANDEZ-BOLAÑOS, An. Quím., Ser. C, 82 (1986) 11-17.